Large-Scale Stabilization Study

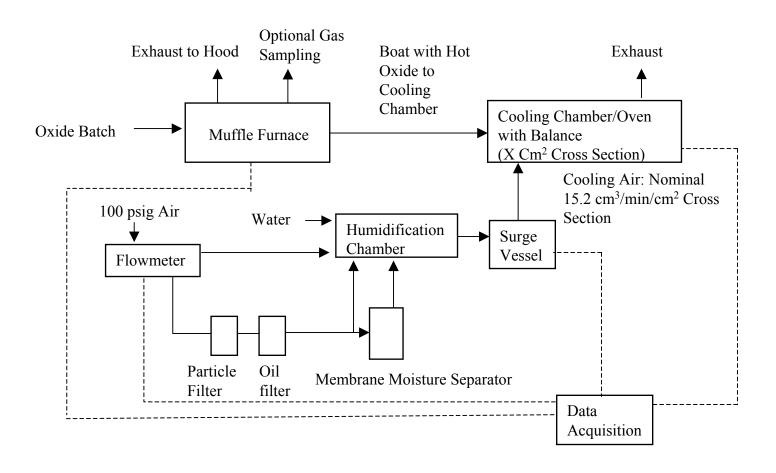
By
Wolfgang Dworzak,
Obie Gillispie

Value of Studying Stabilization Processes

- Understand Effectiveness of Calcination: Impacts on Wt.% Moisture, Corrosives in Product, Corrosion and Availability of Calcining Equipment.
- Understand Rate of Moisture Readsorption: Impacts on Wt.% Moisture in 3013 Container, Corrosion of 3013 Container, Acceptability of 3013 Containers with Questionable Moisture Values, Effectiveness of Diffusion Barriers (Lids, Etc.) on Interim Containers.
- Identify Containers that May Need Greater Levels of Surveillance: Identify Systems that Rapidly Adsorb Moisture and/or Contain Corrosives that Survived Calcination.

Planned Studies

- Calcination: Determine Sweep Gas Flowrate Across Boat, Temperature Distribution in Boat for Various Configurations of Material and Depth, Corrosion of Boat and Furnace.
- Cooling/H □ andling: Determine Moisture Uptake as Function of Conditions (T, Sweep Air Rate, RH, Bed Depth). Principal Dependent Variable: Weight Change.
- Supporting Work: TGA on Initial Materials and TGA/SFE on Products. Chemical Analysis of Corrosion Products or Unknowns. Small Scale Surrogate Tests.
- Use CeO2 and CaCl2 for testing; confirm with PuO2 mixtures later.


Experimental Design for Single Experiment for Material Category 1 (Cerium Oxide)

- Relative Humidity: 60%
- Sweep Flow Rate: 30 Cm³/Min/Cm²
- Bed Depth: 2 inches
- Bed Density (chunkiness): Fine powder
- Initially only one experiment will be conducted for Cerium Oxide.

Fractional Factorial Design for Material Categories 2 (2 Wt%CaCl2) and 3 (10 Wt%CaCl2)

Material Category	Relative Humidity	Sweep Flow Rate (Cm ³ /Min/Cm ²)	Bed Depth (inches)	Bed Density (chunkiness)
	(%)	` ,	(menes)	` ,
2	3	15	1	50%
2	9	15	1	Fine
2	3	30	1	Fine
2	9	30	1	50%
2	3	15	2	Fine
2	9	15	2	50%
2	3	30	2	50%
2	9	30	2	Fine
3	1	15	1	Fine
3	3	15	1	50%
3	1	30	1	50%
3	3	30	1	Fine
3	1	15	2	50%
3	3	15	2	Fine
3	1	30	2	Fine
3	3	30	2	50%

Experimental System Design for Large Scale Surrogate Moisture Uptake Tests

